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A viscous or inviscid cylindrical jet with surface tension in a surrounding medium of 
negligible density tends to pinch owing to the mechanism of capillary instability. We 
construct similarity solutions which describe this phenomenon as a critical time is 
encountered, for three distinct cases: (i) inviscid jets governed by the Euler equations, 
(ii) highly viscous jets governed by the Stokes equations, and (iii) viscous jets governed 
by the Navier-Stokes equations. We look for singular solutions of the governing 
equations directly rather than by analysis of simplified models arising from slender-jet 
theories. For Stokes jets implicitly defined closed-form solutions are constructed which 
allow the scaling exponents to be fixed. Navier-Stokes pinching solutions follow 
rationally from the Stokes ones by bringing unsteady and nonlinear terms into the 
momentum equations to leading order. This balance fixes a set of universal scaling 
functions for the phenomenon. Finally we show how the pinching solutions can be 
used to provide an analytical description of the dynamics beyond breakup. 

1. Introduction 
It is well known (Rayleigh 1879), that a circular jet of finite radius with a surface 

which supports surface tension is linearly unstable to a long-wave capillary instability. 
Any small perturbations with wavelengths larger than the jet radius grow exponentially. 
Furthermore, linear theory predicts a maximally growing wave and hence a dominant 
length scale for the instability. According to linear theory, then, the dominant 
wavelength is approximately 9a where a is the unperturbed jet radius. (This result is 
independent of the surface tension coefficient.) Experiments indicate that the instability 
can lead to breakup, or pinching, of the jet into drops. Clearly the pinching 
phenomenon is nonlinear since the initial disturbance has to grow to amplitudes of the 
order of the unperturbed jet radius. Linear theory, however, does well in the qualitative 
prediction of breakup times, for instance, by employment of empirical arguments such 
as e-fold amplification of perturbations. In many applications the shape and jet 
velocities at breakup are useful but cannot be obtained from linear theory. This 
classical problem has been studied extensively; experiments have been carried out by 
Donnelly & Glaberson (1966), Goedde & Yuen (1970) and more recently Chaudhary 
& Maxworthy (1980a, b). An experimental investigation of capillary instability of a 
dripping jet has been carried out by Peregrine, Shoker & Symon (1990) where many 
photographs of the breaking phenomenon are found. Of particular interest are the fine 
details captured beyond pinching which include ripples on the surface of the jet away 
from the pinch region. Weakly nonlinear theories (see below) have been carried out by 
Yuen (1968) and later by Chaudhary & Redekopp (1980). A review of the subject can 
be found in Bogy (1979) while recent simulations using boundary integral techniques 
are described in Mansour & Lundgren (1990). 
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Viscous-dominated flows form a separate but parallel field. Tomotika (1936) 
considered the linear stability of a stationary cylindrical thread of viscous fluid 
surrounded by a second viscous fluid with surface tension acting at the interface. 
Qualitatively, the stability results are similar to inviscid studies with a maximally 
growing wave with wavelength of the order of the unperturbed thread radius. A more 
complete theory, including the effects of non-uniform jet velocities, can be found in 
Chandrasekhar (1 96 l), where it is shown that capillary instability provides linearly 
growing waves that scale on the jet radius. Recently, Tjahjadi, Stone & Ottino (1992), 
have undertaken an experimental and numerical study of the breakup of viscous 
cylindrical threads of one fluid in another. The experiments and the computations 
show that at the time of breakup the jet tends to form larger mother drops joined to 
smaller satellite drops by thin slender tubes. 

The present approach is a fully nonlinear one with interfacial deflections as large as 
the undisturbed jet radius, as opposed to most previously weakly nonlinear studies. 
Chaudhary & Redekopp (1980) (see also Yuen 1968) consider two low-amplitude 
(asymptotically small but not infinitesimally so) initial perturbations, a fundamental 
and a harmonic. These are followed up to cubic order in the initial small amplitude, 
which is the first stage when the modes interact nonlinearly to produce an amplitude 
equation. The methodology is that of the Stuart (1960) and Watson (1960) classical 
weakly nonlinear theory, even though the jet problem always has a band of unstable 
waves which does not become monochromatic as a flow parameter (e.g. capillary 
number here) is varied. The results are therefore valid for sufficiently small times, but 
as Chaudhary & Redekopp indicate, qualitative features of the experiments are 
reproduced at times which seem to be beyond the validity of the theory. Fully nonlinear 
theories allow the interfacial amplitude to be as large as the unperturbed jet radius, a 
situation which is essential in the description of breakup. This usually means that the 
problem should be addressed numerically, and it is the objective of this work to present 
an analysis of breakup. 

A fully nonlinear theory of inviscid jet breakup in a vacuum was developed by Ting 
& Keller (1991, referred to herein as TK). A set of one-dimensional evolution equations 
was derived by an asymptotic expansion procedure which used the ratio between 
undisturbed jet radius and characteristic axial length scale as a small parameter. The 
equations were used to find similarity solutions at times just after (or just before) 
pinching and to use them along with a mass and momentum balance (see also Keller 
1983) to form a description of the dynamics beyond pinching. An essential element in 
this construction is the choice of the scaling exponent in the similarity solution. Since 
the slender-jet theory does not fix this scaling exponent, a family of solutions 
depending on the scaling parameter is given. The breakup of a fluid sheet (two- 
dimensional) is also considered in TK and earlier by Keller & Miksis (1983). The latter 
study does not assume slenderness and follows the dynamics just beyond breakup by 
constructing numerical solutions of a self-similar system of equations arising from the 
Euler equations. The analogous system in cylindrical geometries is given by us in $2.2. 

The construction of similarity solutions in TK proceeds in two steps: first a reduced 
set of one-dimensional equations is developed using a slender-jet approximation, and 
second, pinching solutions of these equations are found. Our approach differs in that 
the two steps are combined into one with the slenderness ratio being time-dependent 
and becoming asymptotically zero as the postulated singular time is approached. It is 
not surprising, then, that the results for inviscid jets are identical to those in TK. Our 
main interest is in viscous jets but the method is briefly described for inviscid jets also 
to show consistency with the work of TK. A qualification needs to be made, however. 
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The two-step approach provides a simplified evolution system that may not capture 
correctly the transient flow which precedes pinching. In fact, as is briefly discussed in 
$2, for inviscid jets numerical solutions of the initial value problem on periodic 
domains suggest that an infinite slope singularity is encountered before the minimum 
jet radius vanishes; this in turn implies that the long-wave assumption is violated and 
for the periodic boundary conditions utilized in the numerical experiments, the 
pinching self-similar structure supported by the one-dimensional equations does not 
appear as a terminal state. It is worth noting that one-dimensional models of viscous 
jets do not encounter infinite slope singularities (for periodic boundary conditions 
also) as is evidenced by the work of Eggers & Dupont (1994) and Eggers (1993, 1995) 
for viscous jets with inertia and by Papageorgiou (1995) for Stokes jets. 

The dynamics of slender viscous jets have been studied recently by reduction of the 
equations of motion to one-dimensional models. Renardy (1 994) considered 
viscoelastic and Newtonian jets governed by Stokes equations ; he shows analytically 
that viscoelastic jets under several constitutive laws remain free of finite-time 
singularities while Newtonian jets break after a finite time under certain assumptions. 
Analogous models of jets governed by the Navier-Stokes equations have been derived 
by Eggers (1993) (see also Eggers & Dupont 1994; Eggers 1995 and Papageorgiou 
1994). These one-dimensional models allow universal similarity solutions at pinching. 

The objective of this work is to look for singular solutions directly from the 
equations, as in the work of TK, but without first deriving one-dimensional equations. 
If the slenderness assumption is valid at the time of pinching, it is shown that self- 
similar pinching solutions of the two approaches are equivalent. Navier-Stokes 
solutions follow by a rational extension of the results for Stokes jets and both are 
analysed before and after pinching. The dynamics after pinching involve mass and 
momentum balances of the motion of a blob of fluid attached to the end of the slender 
jet; such analysis was first performed by Keller (1983) and extended by TK to include 
the effect of the flow in the adjoining thread of fluid; more recently Keller, King & Ting 
(1995) have analysed blob formation by incorporating into the previous models the 
flow inside the blob - this involves solving the Euler equations in a non-slender but 
spherical geometry with matching effected with the adjoining thread of fluid. Scaling 
exponents can be fixed for viscous slender jets while for inviscid jets the theory is 
generalized to non-slender pinching configurations in order to achieve this. The 
axisymmetric analogue of the problem solved by Keller & Miksis (1983) needs to be 
addressed for inviscid flows, then. 

The article is organized as follows. Section 2 deals with the breakup of inviscid jets 
governed by the axially symmetric Euler equations. The theory is generalized to non- 
slender configurations in order to fix the scaling exponents, and the governing system 
in such instances is derived. Section 3 considers jets described by the Stokes equations. 
Self-similar equations are derived near the pinching time and solved and the scaling 
functions are determined. The exponents are universal but the scaling functions 
contain an arbitrary multiplicative constant. In $4 the inertial and unsteady terms 
dropped in the derivation of the Stokes flow are retained and a system governing the 
local flow in this case is derived and analysed. In $5 we use the solutions at pinching 
for both Stokes and Navier-Stokes jets to construct the dynamics beyond the pinch 
point. In the latter case the local description is free of arbitrary constants. 
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2. The theory for inviscid jets 
The equations governing the fluid motion can be written in terms of a velocity 

potential #(t, Y, z )  which is independent of the azimuthal angle 8 for axisymmetric 
flows. A system of cylindrical polar coordinates (Y, 8, z )  is used with corresponding 
velocity vector u = (u ,  u, w )  = V$. Using this notation, 4 satisfies Laplace's equation 
while at the free surface two conditions are specified: a kinematic condition and a 
normal stresses balance which gives the pressure jump across the interface. When the 
latter condition is used in the z-momentum equation the usual Bernoulli equation 
arises. Without loss of generality we give the system for a static undisturbed 
jet, noting that any background axial velocity can be removed by a Galilean 
transformation. The equations with boundary conditions are 

(2.1 a) 

(2.1 b) 

(2.1 c) 

A final boundary condition is regularity of 4 at r = 0. Equations (2.1 a-c) are in non- 
dimensional form where the following scalings are used : spatial variables are scaled 
with R the undisturbed jet radius; the time scale is that of capillary instability and is 
given by @R3/cr)112 where p is the fluid density and cr the surface tension coefficient 
(both assumed to be constant); the potential $ is scaled by ( R c ~ / p ) l / ~ .  These are the 
classical scalings that lead to Rayleigh's linear stability results. 

In general (2.1 a-c) must be addressed numerically subject to suitable initial 
conditions, for instance, 

( 2 . 2 ~ ~  b) 

In what follows we consider the possibility of the jet pinching after a finite time with 
the radius tending to zero at some point or points. The analysis presented is a local one 
and does not lead to a prediction of the singular time but provides possible terminal 
self-similar structures. Two distinct but related cases are analysed. First a slender-jet 
approach is taken whereby the jet shape near the pinching timer is characterized by a 
long axial length scale compared to its amplitude, resulting in similarity equations 
equivalent to those found by analysis of long-wave partial differential equations (as in 
TK for instance). In the second case the slender-jet scalings are dropped and a theory 
with solutions with comparable axial and radial length scales is presented (an 
axisymmetric extension of the problem studied by Keller & Miksis 1983). 

2.1. Slender-jet theory 
We construct pinching solutions of (2.1 a-c) by assuming the following ansatz as a 
singular time t ,  is approached from below (in what follows 7 = ( t ,  - t )  unless otherwise 
stated) : 

r = f y ,  z = 7fl& S(t,  z )  = 7af7, 0, (2.3 a-c) 
(2.3 d )  

$w, z ,  0 )  = $i(r, 4, S(Z7 0 )  = S,(Z). 

$(T, Y, 4 = 7yx(7,Y, 0. 
According to these transformations time and space derivatives become 

(2.3 e-g) 
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For slender-jet shapes at breakup, then, we have r G z which in turn suggests the 
condition 

Substitution of the ansatz (2.3a-g) into (2.1 a)  converts the Laplace equation into 
a > p. (2.4) 

According to (2.4),  72a-2P is a small parameter and an expansion for x can be sought 
as follows: 

(2.6) X = Xo(Y, 5> 7”-”x,( y ,  [) 4- 74a-4PXz( y ,  X) + . . . , 

f(7,t) = fo(8 + T2a-2yl(5> + . . . . (2.7) 
Substitution of (2.6) into (2.5) gives the following solutions to leading order which are 
regular on the jet axis y = 0: 

X o  = A(&‘), 21 = -aY2Ag+B(5>, ~2 = & ~ ~ A g t t - + . ~ ~ B t s +  C(Q, (2.8a-C) 
where the functions A([ ) ,  B ( 8 ,  etc. are to be found. 

Next we consider the kinematic condition (2.1 b) .  Substitution of the ansatz (2 .3)  into 
(2.1 b )  along with the expansions (2.6),  (2 .7)  and the solutions (2 .8a,  b )  yields, to 
leading 
order, the equation (primes denote (-derivatives) 

- 37 1 Y+a--PPfOA” = ~ - 1 (  - af, +ply;) + 77+a-2U’f ’  0 + 0(77+3”-48). (2 .9)  
It can be seen from (2.9) that a leading-order balance arises by 

y+ a- 2 p  = a- 1 * y = 2 p -  1 ,  
with (2.9) becoming 

f f o A ” + A ’ f k - ~ f o + + &  f ;  = 0. 

(2.10) 

(2.11) 

A second equation connecting A ( 8  and f o ( 0  is found by a leading-order balance in 
the Bernoulli equation (2.1 c). Proceeding as above and substituting the value for y 
found above, we find to leading order, 

(2.12) 

In obtaining (2.12) a leading-order balance has been made which determines a in terms 

a = 2 - 2 p .  (2.13) 

Clearly the expansions in the kinematic condition and the Bernoulli equation are 
consistent if 

This is easily found, for example, by comparing the first two terms in (2.12) and using 
the fact that 7 + 0 + . The case p = ; is a critical one and implies that a = $ also; the 
slender-jet assumption is no longer valid then, and a different analysis is required (see 
0 2.2 below). 

The system to be solved, therefore, is (2.1 1 )  along with the leading term of (2.12) 
which is 

of p: 

p < ;. 

1 
( 1  -2 /3)A+p[A’+i (A’)2+-  = 0 .  

f o  
(2.14) 
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The coupled system (2.11) and (2.14) determine acceptable scaling functions as a 
pinch forms in the jet. The value of /3 is left undetermined by the analysis; a higher- 
order analysis which includes the effect of higher-order terms in the expansions (2.6) 
and (2.7) has been carried out in an attempt to obtain further information on p. It has 
been found (for brevity this is not included here) that higher-order corrections are 
governed by linear equations with forcings which depend on A andf,. In particular, 
second-order corrections are governed by equations which are regular for all values of 
p of interest and so no additional information is obtained. A slender-jet theory which 
includes higher-order terms and in particular the axial effect of surface tension is able 
to fix the value of ,8 but the equations are different, as expected. These results are 
reported elsewhere. 

It is useful to make a comparison with the work of TK. The underlying assumption 
in TK is that throughout the evolution the axial length scale is asymptotically larger 
than the radial one so that their ratio is l /e  with E 4 1 (the parameter E is arbitrary and 
is not connected to scales given by linear stability for example). Next proceed as follows 
(details may be found in TK): expand quantities in power series of 2 which gives a 
leading-order solution of Laplace’s equation independent of z ; substitution of this 
solution into the kinematic and Bernoulli equations yields a coupled system of 
nonlinear PDE’s written as 

s,+;sw,+s, w= 0, (2.15) 

&+ ww, = sz/s2, (2.16) 

where S(t, z) is the scaled jet shape and W(t, z) = Qz(t, z) with $(t, z )  the leading-order 
potential (W therefore is the axial velocity of the jet, to leading order). These equations 
are identical to those derived and used in TK if Q is adopted in favour of W. In 
accordance with (2.3~-d) we seek singular solutions (as r+  t s - )  of the form 

which give the following scalings and scaling functions : 

a = 2-2p, y1 = p- 1, (2.17) 

- ( 2 - 2 p ) f o + P ~ f ~ + ; f o g ’ + g f ; ,  = 0, (1 -P)g+P&’+gg’ =fX. (2.184 b) 

Equations (2.1 1) and (2.14) are seen to be identical to (2.18 a, b) once the substitution 
A’+g is made and (2.14) is differentiated once. Numerical solutions of (2.18~) and 
(2.18b) have been given in TK (TK study dynamics just beyond pinching, but as a 
referee points out a simple transformation gives dynamics just before pinching and 
hence solutions of (2.1 1) and (2.14)) and so are omitted here. The asymptotic behaviour 
at infinity is easily found (see TK also) to be 

( 2 . 1 9 ~ ~  b) 

while the outer solutions have the following asymptotic forms as IzI + 0: 

S(t ,  z) N lzlZ(l-’)/P, W(t, z )  - Iz”)”, Iz/ + 0. 

In an attempt to verify the singular structures given by solutions of (2.18~2, b) the 
one-dimensional system (2.19, (2.16) was solved numerically. Periodic boundary 
conditions are imposed in the axial direction and spectral methods are used to integrate 
the equations. It is found that solutions tend to terminate in infinite slope singularities 
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FIGURE 1 .  Numerical solutions of the inviscid one-dimensional model equations indicating infinite 
slope singularity after a finite time. The computation is stopped when the maximum of either IS,] or 
I W,l gets larger than 20. (a) Evolution of S(x, t) ,  (b) evolution of W(x, t ) ,  (c) evolution of the maximum 
slope of S(x, t ) ,  (a) evolution of the minimum slope of W(x, t ) .  

after a finite time for different initial conditions. Representative solutions are depicted 
in figure 1 (a-d). The initial conditions used utilize a symmetry of the equations, namely 
that if S and W are even and odd respectively at t = 0, then they remain so for 
subsequent times. In particular figure 1 was obtained for the following initial 
conditions : 

S(z, t = 0) = 1 + 0.1 cos ( z ) ,  W(z, t = 0) = 0.1 sin (z) .  

The accuracy of the computation is monitored by noting that the integrals of S 2  and 
Ware conserved quantities. Figure 1 (c, d )  shows the time evolution of the maximum of 
S,  and the minimum of W,. The numerical solutions suggest, therefore, that infinite 
slope singularities are encountered after a finite time and before the jet radius vanishes; 
it can be concluded, therefore, that from this class of numerical experiment, at least, we 
do not see any evidence of pinching solutions but instead see a violation of the slender- 
jet assumption. It is possible that pinching solutions can be achieved by changing the 
boundary conditions (for example removing fluid from the ends of the computational 
domain) but our interest is in a local breakup which is not sensitive to conditions far 
away from the pinch point. Since infinite slope singularities herald a violation of the 
model, no attempt has been made to analyse their local behaviour. We note also that 
numerical solutions on periodic domains of the viscous one-dimensional long-wave 
models do not violate the slender-jet ansatz used to derive them and instead produce 
pinching solutions consistent with the self-similar forms provided by the asymptotic 
theory (see Eggers 1993 and Papageorgiou 1995 for Navier-Stokes and Stokes flows 
respectively). 
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2.2. General theory, a = ,4 

Guided by the fact that numerical solutions of the initial value problem of the slender- 
jet model indicate that axial and radial scales do not remain disparate, we now consider 
pinching occurring on axial and radial length scales which are comparable. This 
amounts to taking a = pin the scalings (2.2~-c). The balance (2.10) still holds from the 
kinematic condition while a balance between surface tension and convection terms in 
the Bernoulli equation fixes the value of p = (this can also be seen from (2.13) by 
setting a! = p). The following scalings are found: 

S(t ,  z )  = T ~ / ~ J T ~ ,  (2.20~-c) 

We note that the scaling functions JT’ and ~ ( y ,  8 are now exact similarity solutions 
since all terms in the governing equations (2.1 a-c) are of the same order as a pinch 
forms. The consequence of this is that the governing system in the similarity region is 
an elliptic partial differential one with a free nonlinear boundary which is to be 
determined. This system is 

(r ,  z )  = ~ ~ ’ ~ ( y ,  t), $ ( r ,  r,  z )  = T’/’x( y ,  Q. 

(2.21 a) 

(2.21 b) 

Equations (2.21 b, c) are the boundary conditions at the free surface while regularity of 
solutions provides another condition at y = 0. In order to be able to obtain the 
similarity, field conditions at infinity need to be specified also. Solutions to (2.21 a-c) 
have not been obtained yet; Keller & Miksis (1983) have solved the analogous two- 
dimensional problem and the system above is the axisymmetric extension to that. It 
would be interesting to see if solutions to the axisymmetric system support the wavy 
capillary ripples far away from the pinching region computed by Keller & Miksis. Such 
wavy behaviour away from the pinch has also been observed in the experiments of 
Peregrine et al. (1990) for axisymmetric jets. 

3. Theory for highly viscous jets 
In this section we consider the collapse of a viscous thread of fluid of undisturbed 

radius R under capillary instability. In numerous applications characteristic Reynolds 
numbers are small and the flow is governed by the Stokes equations. Such flows are 
driven by capillary forces which in turn provide a scale for the flow velocities. In non- 
dimensionalizing the equations, therefore, the following scales are used : 

CT CT PR- 
P R 0- 

( r , z )  = R(F,.Z), (u, w) = - ( u , W ) ,  p = -p, t = - t ,  

where CT is the surface tension coefficient and the fluid viscosity. The non-dimensional 
equations and interfacial boundary conditions become (dropping the bars) 

V2u---u 1 = p r ,  V2w = p z ,  -(ru),+w, 1 = 0, (3.1 a-c) 
r2 r 
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On r = S(t ,  z )  we have 

(u, + w,)( 1 - S,2)+ 2u, s2 -2w,  s, = 0, (3.1 d )  

p - ~ ~ , - ( - p + 2 w , ) S ~ + 2 ( u L + w T ) S Z  = - (l+S,2)-l/', (3.le) 

u = s,+ ws,. (3-lf) 
The interfacial conditions (3.1 d-f) represent the tangential stress balance, normal 
stress balance and the kinematic condition respectively. An additional condition is 
regularity of the velocity field on the jet axis r = 0. The problem (3.la-f) poses a 
formidable analytical task. Analytical studies are usually confined to linear stability 
and in the fully nonlinear regime the problem has been addressed numerically (see the 
Introduction). In order to draw up an analogy with the inviscid analysis of $2, we can 
introduce a streamfunction $ defined by u = - ( l / r )  $,, w = (1 / r )  $, so that the 
continuity equation (3.1 c) is satisfied. Elimination ofp between (3.1 a, b )  yields a single 
equation for @, namely 

(3.2) 
4 2 a  

r ar E $ = 0, E2 G V2---, 

The flow field in the viscous case is governed by a fourth-order equation as opposed 
to the second-order Laplace equation for the potential in inviscid flows. As seen below 
the analysis of viscous jet pinching is slightly more involved. In what follows we choose 
to work with primitive variables rather than with the streamfunction $. 

Following the ideas developed in $2, we look for singular terminal states of 
(3.1a-f) according to the ansatz 

r = (t,-t)"y, z = (t,-t)P& S = (t,-t)af(Q, (3.3 a-c) 

w = (t,-t)Y W(t ,y ,Q,  u = (t,-t)Y+"-PU(t,y,Q, p = (t,-t)-"P. (3.3d-f) 

The expression for u follows from the continuity equation (3.1 c)  once w is specified, and 
the scaling for the pressure p is a consequence of the normal stress balance equation 
(3.1 e)  since capillary instability drives the dynamics. Assuming a long-wave ansatz at 
pinching implies the inequality 

01 > p. (3.4) 
Consideration of equation (3.1 b)  for w indicates that if a leading-order balance is made 
between the radial derivative terms of w and the pressure gradient term (this requires 
y = a-p), the following leading-order solution for W arises: 

W =  :y"++(Q, (3.5) 
where A(Q is an unknown function. An inconsistency appears now if (3.5) is 
substituted into the tangential stress balance equation (3.1 d) .  The leading-order 
contribution to (3.1 d )  after substitution of the scalings (3.3) is simply W, = 0 on 
y =An. Application of this condition to the solution (3.5) found above implies that 
PJo = 0 leading to an inconsistent solution P = const. A consistent solution is 
constructed by expanding W (and therefore V )  in appropriate powers of (t,- t )  with 
the leading-order contribution of W being independent of y so that the tangential 
stress balance is satisfied identically to leading order. Another way to see that 
the leading-order solution for W is independent of y is from equation (3.2) for the 
streamfunction after making the transformations (3.3) ; in fact, these scalings 
indicate that the streamfunction has an expansion 

$ = 7"($., + 72a-2P$,1 + o(74"-49, 
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and the equation satisfied by $o is 

2 3 3 
1c.o,,,, -- +oyyy + 7 +oyy -- $0, = 0, Y Y 3  

with solution $o = $o([) by demanding regularity at y = 0. The appropriate expansions 
for w and u become, then, 

(3.6a) 

(3.6b) 

In general an expansion for At) is also needed but since higher-order terms are not 
required in the analysis that follows (and that of $4) we work withflt) where it should 
be understood to be a leading-order quantity. The solution for Uo which is regular at 
y = 0 follows from (3.1 c): 

(3.7) u - - -1  w 
0 - 2Y Of' 

Next we obtain the solutions for W, and U,. Using (3.3) and (3.6a) in equation (3.1 b) 
gives 

T 2 P  - + - - ( w,) + 7'/-2pF&ff + . . . = r-.-PP f '  
($2 ;;) 

Balance of the leading-order terms involving W,, and P gives 

y = P-a, (3.9) 

and a solution for W, follows by integration with respect to y since the pressure is 
independent of y by the normal stress balance (see comments below also): 

w, = i Y 2 ( p f -  %,,I + 4 0 3  (3.10) 

where A is some function of [. Using (3.10) and (3 .1~)  gives 

Ul = -&Y3(P,g- w o f , , )  +w,. (3.11) 

Implicit in the solutions (3.10), (3.1 1) is the assumption that P, = 0. Using the values 
(3.9) in the radial momentum equation (3.la) gives, to leading order, 

($+i$-+) uo = Py. (3.12) 

Now substitution of the solution (3.7) for Uo into (3.12) shows that the left-hand side 
is zero and so 

Py = 0, (3.13) 

showing consistency of the expansion. 
Next we consider the tangential stress balance. Using the values (3.9) gives the 

following equation to leading order: 

Uo,+ y ,+2U0, f ' -2W, f '  = 0 on y =An. (3.14) 

= 7-a. Use of solutions (3.7) and (3.10) in (3.14) 

c f 3  WA)' = f f 3 p ' .  (3.15 a) 

An expression for P in terms of Wo is available from the normal stress balance 
equation. It is found that to leading order several terms in this equation are in balance 

Each term in (3.14) is of order 
gives an ordinary differential equation for Wo(@ : 
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in fact, according to the previously found values (3.9)), the resulting (and of order 
equation being 

(3.15b) 
1 

P-2U0, = - on y =A#. 
f 

Substitution of (3.15b) into (3.15a) allows one integration to yield 

1 k  W’ = --+- 
a 3f f 2 ’  

(3.16) 

where k is a constant of integration. With Wo known in terms off, an equation for f 
arises from the kinematic condition (3.1 f )  and use of the ansatz (3.3) along with the 
appropriate derivative transformations (see $2 also). To leading order, therefore, the 
kinematic condition becomes 

7Y+a-P( -‘fW‘) 2 0  = 7a-1( -@f+p[f’)+7Y+a-Pvoy. (3.17) 

Balancing terms and using (3.9) gives 

a = l ,  y = p - 1 .  

The system of equations to solve consists of (3.16) and 

(W,+POT+( -f--+-) 1 k  = 0. 

6 2f 

A single equation for f can be obtained by elimination of Wo to give 

( f 2 + 6 9 f . + (  - i+(P- l ) f+-  ( f ’ ) 2  = 0. 
2f k, 

(3.18) 

(3.19) 

(3.20) 

Equations (3.16) and (3.19) or equivalently equation (3.20) have a two-parameter 
family of solutions analysed next. 

3.1. Analysis of the similarity equations 
To facilitate comparison with the Navier-Stokes theory of the following Section we 
begin with the third-order system rather than the integrated form (3.16). This system 
is 

W”+2-Ww’+--=O0,  f’ I f ’  
O f 3f2 

(3.21 a) 

(W,+p[)f’- f ( l - ;w;)  = 0. (3.21 b )  

(These are equations (4.7) and (4.8) below at zero Reynolds number and /3 = ; (see $4)). 
The following form of (3.21 a) is useful in understanding the behaviour at infinity and 
in particular the similarities between the asymptotic behaviour of the Stokes theory 
and the corresponding one for the Navier-Stokes flow. Equation ( 3 . 2 1 ~ )  is easily 
rewritten as 

(3.21 c) 

The behaviour of solutions for large 1[1 is considered first. It is easy to show from 
(3.21 a, b )  that far from the pinch point the asymptotic form of the scaling functions 
is 

f(Q - l[pP, w, - I[l-(l-fl)/P. (3.22a, b )  
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Since P < 1, it is seen that W, decays to zero andf(5) increases without bound. These 
asymptotic expressions provide the form of the solutions as viewed from outside the 
similarity region. In fact using (3.22) in the ansatz (3.3) and rewriting variables in terms 
of z we see that the time dependence drops out and 

s N z l / P ,  w N z-(l-P)/P 

to leading order. In constructing acceptable scaling functions that match with the outer 
flow it is necessary to pick out those solutions of the nonlinear system which give f 
growing unbounded as in (3.22) as 151 + 00. 

Corrections to (3.22) are obtained by the substitution of those forms into (3.21 a,  b) 
and solution for a linearized correction at infinity. The following series involving two 
parameters, k, and k,, has been found as 5- 00 : 

(3.23 a)  

(3.23b) 

We can conclude from (3.23a, b) that since W, is bounded and decays to zero at 
infinity, there is a point where P(+ W, vanishes. From (3.20b), then, regularity off 
implies that at such a point, E0 say, we impose 

1 - p q g  = 0. (3.24a) 

The point 5, is a removable singularity and must be treated separately in numerical 
work for instance, The transformations 

f + X  g(r )  = K J + P 5 0 ,  7 = 5-50> 
shift the position of the singularity to 7 = 0; the only change is that the asymptotic 
value of the transformed variable g far from the pinch point is no longer zero but /?go 
with 6, arbitrary. The conditions on g at 7 = 0 become 

g(0) = 0, g’(0) = 2. (3.24b, c) 

In what follows we show how a closed-form solution an be obtained which satisfies the 
conditions at infinity. It is useful to consider the integrated form of the equations (after 
an integration of (3.21 c)) 

(3.25a, b) 

where k is a constant to be determined. A single equation for f follows after elimination 
of g to give 

(3.26) 

Smooth solutions of (3.26) can be found which are symmetric about 7 = 0 (see below). 
Using this symmetry the following local solutions arise in the vicinity of 7 = 0: 

As) =fo+rY2+71Yi+..., Irl -4 1 ,  (3.27a) 

g(7) = 2r+g,y3+.. .  , 1111 4 1 .  (3.27b) 
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Substitution of these expressions into (3.25a, b) gives the following equations for the 
leading coefficients : 

2 f : + i  f o - k  = 0, (3.28a) 

(f+4fO)f2+3fgg3 = ‘3 2 @ + 2 ) f 2 + $ f g 3  = O’ (3.28 b ,  c )  

The simultaneous system (3.28b) has a non-trivial solution if the determinant of 
coefficients vanishes, a condition that yields a value for f,, and which in turn yields the 
value of k from (3.28a),  both in terms of p: 

3 + 2 p  
72( 1 + /3), * 

k =  1 
f, = 12(1+P)’ 

(3.29) 

The remaining coefficients in (3.27a, b )  are expressible in terms of a single arbitrary 
parameter, f ,  say. 

Next we construct an implicit form for the solutionA5). Equation (3.26) can be 
integrated once by separating variables and splitting the right-hand side into partial 
fractions to give the implicit form 

(3.30) 

where A is a constant to be determined. The solution (3.29) has been given for positive 
7 and can be extended to negative 7 by symmetry Cfbeing symmetric with respect to 
7). One way to see this explicitly, is to make the substitution 

cosh2(0), 
1 

= 12(1+P) 

so that O = f ~ o s h - ~ ( I 2 ( 1  +p) f)l12. The solution becomes, then, 

dO= AT,  q > O ,  (3 .31 a )  
1 ’ (cosh2 O + 3 + 2p)fi+1/2 

(12(1+/3))pj0 coshO 

dO=-A?, ~ < 0 .  (3.31 b) 
1 ’ (cosh2 0 + 3 + 2p)p+1iz 

(12(1 +/?) )p jo  coshO 

The constant A can be expressed in terms of the parameter f ,  introduced in (3.27a) 
above, by writing ( 3 . 3 1 )  for small 7;  this gives 

Withf(7) known, the variation of g with 7 is obtained by integration of (3.25a) and 
yields 

(3.32) 

with k given by (3.29) and to arbitrary. The constantsf, and to are the parameters 
describing the two-parameter family of solutions for different values of p. Since g(7)  in 
(3.32) satisfies the conditions g( f co) = p.&, the value of k (and hence p) is fixed from 
(3.32) to be 

( 3 . 3 3 )  
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f2=0.Ol 

" 
-0.5 0 0.5 

f2=0.1 

-0.5 0 0.5 

It has been confirmed numerically that the ratio of the integrals in (3.33) is independent 
off, as expected from the expression (3.29) for k. Equation (3.33), then, is an 
eigenrelation of the form 9@) = 0 which must be solved numerically. Before 
presenting numerical solutions, it is interesting to consider the limiting case /3 = f ;  as 
shown in the following Section which treats the Navier-Stokes flow, the Stokes flow 
is valid as long as p < f. With /? = f the integrals above can be carried out to give the 
following implicit solution for fly) : 

(3.34) 

with a symmetric expression valid for 7 < 0 and A as above but evaluated at p = f .  
The numerical work has been carried out using (3.30) or (3.31) to determinefla and 

(3.32) to obtain g(a. The role of the parameterf, is simply a rescaling of the solutions 
by a multiplicative factor and does not affect the admissible unique value of p which 
is to be determined. Equation (3.30) is integrated by quadratures to yield the value of 
y at an interfacial amplitudef. It was found useful to remove the singularity by an 
integration by parts before the numerical implementation ; more grid points ( i n n  are 
required near the minimum to maintain overall accuracy. The same procedure with 
(3.3 1) is preferable since the integrand is free of singularities. Given a value of p, then, 
the solutionflq) is obtained over a large enough range. Equation (3.33) is used in an 
iteration scheme to compute the value of p. These computations give a value p = 0.175 
correct to three decimal places. The scaling functions are unique to within a scaling 
factor and representative solutions are given in figure 2. 
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4. Pinching solutions of the Navier-Stokes equations 
In this Section we consider the range of validity of the pinching solutions given 

previously according to the Stokes equations. The Stokes approximation is valid as 
long as the convective unsteady terms in the Navier-Stokes equations are negligible. In 
view of the non-dimensionalization in the beginning of $ 3, the Navier-Stokes 
equations read 

U 
Re(u,+uu,+uw,) = -pr+V2u-- ,  

r2 
(4.1 a) 

Re(w, + uw, + ww,) = -pz + V2w, (4.1 b) 

while the continuity equation is (3.1 c). The Reynolds number appearing above is 
Re = crpR/p2, also known as the capillary number in the literature, and measures the 
ratio between surface tension and viscous forces. In the Stokes equations (3.1 a, b) the 
left-hand sides of (4.1 a, b) above are dropped. The validity of our highly viscous 
solutions can be seen from the form of the expansion ( 3 . 6 ~ )  for instance, where the 
leading-order contribution to the axial velocity of 0 ( 7 p - ' )  and so blows up as 7+ 0. The 
theory of $3 uses information from the first two leading-order terms of w and the 
leading order in u (equations (3.6a, b)) and p .  For clarity let us rewrite the ansatz in 
terms of the single parameter p: 

w = 7p-'6(g+771-py+ ... ) u = U0(y,[)+72-2QJ1+ ..., (4.2a, b) 

with K, Ui, i = 0,1 known. Consider next the substitution of (4.2a, 6)  into (4.1a, b). 
The first stage where the theory of $3 is violated arises when the largest terms on the 
left of (4.1 a, b) are of the same order as the smallest terms retained on the right of the 
Stokes theory. The largest term on the right of (4.1 a) needed in the Stokes theory have 
0(7-2) (see (3.12)), while the largest terms on the left have 0(7'-'8) (the unsteady term) 
and O(7-l) (convective terms); the unsteady term becomes comparable to the terms 
retained on the right when ,!3 = 4, which is outside the range of slender-jet ansatz, 
p < 1 and so is dropped (see comments below also). The radial momentum equation 
(4.1 a), therefore, is accurately described by the asymptotic solutions found in $3, as 
limiting solutions of the Navier-Stokes equations as 7 + 0. 

The axial momentum equation (4.1 b) is more important in this limit. Carrying out 
a similar order-of-magnitude analysis we see that the smallest diffusive and pressure 
terms required in the Stokes theory have O(7-l-P) (see derivation of (3.8)). The largest 
terms appearing on the left include all three terms and have 0(7p-") .  The Stokes theory 
of $3 is asymptotically consistent, then, as long as 

which imply the inequality 

As shown below, the leading-order balances in the tangential and normal stress balance 
equations and the kinematic condition are as before. We note that this still describes 
slender jets since p < 1 also. The limiting case is ,8 = f, when the convective terms of 
the axial momentum Navier-Stokes equation enter. 

With /3 = f, the following expansions are used: 

TP-' 4 r-l-p, 7 + 0, 

p < f .  

w = 7 - " 2 ~ ( 5 ) + 7 1 / 2 ~ ( y , 5 ) +  ..., u = U0(y , iJ+7U1(y , iJ+ ..., (4.3a, b) 

S(t,z) = T~TQ,  p = 7 - ' P ( y , g + .  .., r = 7y, z = 7l/'[. (4.3 c-f) 
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The functions q, Ut and P are to be determined and should not be confused with those 
of $3. The main difference between these solutions and those of 53 lies in the 
determination of the function W,(y, 0. Substitution of (4.3 a, c) into (4.1 a, b) gives 

P, = 0, (4.4) 

where primes denote 6-deriatives and (4.4) has been used to infer that P is a function 
of ,$ alone. The solution of (4.5) which is regular at y = 0 is 

with A(Q an arbitrary function of c. A solution for U, then follows from the continuity 
equation but is omitted here since it is not needed in the final result. The leading-order 
contributions of the tangential stress balance, the normal stress balance and the 
kinematic condition are exactly equations (3.15a, b)  and (3.17) respectively with 
p = :. This follows easily from the analysis of 93. The influence of the convective 
terms is felt through the coupling provided by the tangential stress balance and the 
radial derivative of the axial velocity. 

The required equations, then, arise from the tangential stress balance and the 
kinematic condition evaluated at y =f. Using the solution (4.6) in the latter along with 
the leading-order solutions found in $3, gives the following system of equations: 

( w + ~ ~ f ’ - f < l - ; W ; ) = o .  0 2  

Note that the presence of terms involving the Reynolds number in (4.7) does not enable 
integration of (4.7). In the limit Re = 0 equation (4.7) reduces to (3.16) after one 
integration (the limit is a regular one since it does not involve a vanishing second 
derivative). We also note that equations (4.7) and (4.8) have also been derived by 
Eggers & Dupont (1993) and Papageorgiou (1994) who employ a slender-jet 
approximation first to reduce the Navier-Stokes equations and boundary conditions 
to a coupled set of nonlinear partial differential equations involving t and z alone. As 
shown by Eggers & Dupont (1993) and Papageorgiou (1994) the one-dimensional 
model equations admit pinching solutions with exactly the scalings found here, and 
with the scaling functions satisfying (4.7) and (4.8) exactly. 

The behaviour of the solutions far from the pinch point is important as it provides 
the correct behaviour for the outer solution. For large 161, then, the main balances in 
(4.7) and (4.8) are 

respectively, leading to the asymptotic forms 

w,+Ew; - 0, f6”r-f-  0, 

K(6) - t-l, A0 - E2 as 1 6 1 - f ~ .  ( 4 . 9 ~ ~  b) 

Rewriting these conditions in terms of the outer variables (4 .34 gives the following 
asymptotic behaviour for the outer solutions as z -+ 0 : 

w - z-l, S - z2 as (z(  +O.  (4.10a, b) 
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In fact the asymptotic behaviour for large 151 can be determined in terms of two 
parameters as follows. From (4.94 b) we write 

w,-c,(-'+%, fwc1c2+f l  as 1[1+co, 

where tilde quantities are small compared to the leading terms. Substitution of these 
expressions into (4.7) and (4.8) and linearization with respect to 6 andflleads to the 
following leading-order balances : 

:Re( % + [I?;) = Re ci +-- 6c, [?, ( c1 2 ,  
- I  'E7-f = --3c c 

2 2 0 1' 

The particular solutions of these equations give the corrections % and fl and the 
process can be repeated to obtain higher-order corrections all in terms of the two 
parameters c, and cl. The first two terms in the series are 

W,(Q = cot-'+- 6co---Rect (-'++.., ](1+00, (4 .11~)  

(4.11 b)  

It is interesting to compare (4.11 a, b)  with the corresponding Stokes flow equations 
(3.21) as Re + 0. In this limit the second term in (4.11 a) remains regular if 

Re l (  C l  2 ,  

At) = cl[2+;coc1+ ..., 151+co. 

CO = 1/(3C1), 

and making the correspondence c1 + k,  between (4.11) and (3.23 a, b)  together with 
/3 = f shows that the two series are in agreement except for the second-order correction 
for W,. 

It can be seen from (4.1 1 a, b)  that two parameters appear at infinity. The solutions 
to (4.7) and (4.8) are described by a three-parameter family and the remaining 
condition is found from the regularity off over its domain. As shown in $3.1  the 
appropriate conditions are 

W,(5,) +;go = 0, 1 -p;(5,)  = 0, 

and a local solution near [ = 5, has been found in terms of the two parameters 6, and 
f o  : 

Re 
(5 - to) + f :  Re 'f0+4(3f0- 1) 

(6-  + . . . , (4 .12~)  
- 48 + 288h - 432f i - f, Re 5: + 9f i Re (i 

X 
16(3f0- l)2(18f0- 1)  

(4.1 2 b)  

Equations (4.1 1 a, b) and (4.12a, b) clearly show that we are dealing with a three- 
parameter family of solutions. For instance, if the asymptotic constants co and c, are 
known (note that different values obtain at +co even though we use the same 
notation), then a shooting method must be employed in a numerical integration from 
the neighbourhood of the removable singularity out to infinity to yield a unique set of 
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scaling functions. Here we are interested in the dynamics beyond the breakup (see $ 5 )  
which require the constants c1 and c2. Numerical solutions of the system (4.7), (4.8) 
have been obtained by Eggers (1993, 1995) and some of those results are used below. 

5. The dynamics beyond pinching for Stokes and Navier-Stokes jets 
In this section we follow the ideas of Taylor (1959), Keller (1983) and TK to follow 

the evolution of the jet beyond pinching by a simple analytical model that captures the 
main features of the dynamics. The theory will be presented for viscous jets and inviscid 
analyses can be found in TK and Keller et al. (1995). The slender-jet ansatz is valid up 
to the point of breakup and the solutions given in the previous Sections describe the 
local flow up to that time. Just beyond breakup the jet separates and the two ends 
accelerate away from the breaking point. The models proposed by the authors cited 
above, and which are in line with experimental observations, assume that the jet ends 
at some point, X(t )  say, and a blob of fluid of mass M(t)  is attached to this end. Mass 
and momentum balance arguments provide evaluation equations for M(t) and X(t) 
which need to be solved subject to initial conditions which coincide with the solutions 
just before breakup. There is a difference between the viscous and the inviscid theory, 
in that the exponent /? is not fixed for the latter and so some jet shape must be taken 
in order to fix it; TK carry out the analysis for several different values of ,8 which 
probably correspond to self-similar solutions evolving from different initial and 
boundary conditions. For the viscous theory presented earlier the values of /? are fixed 
and so are the scaling functions (see later also). The model is completed by using 
information in the equations for M(t) and X(t) about the flow field as solved by the self- 
similar slender-jet theory. 

The first equation comes from a mass balance of the blob. The following 
dimensional variables are used: M(t) is the blob mass, X(t )  is the axial distance from 
the breaking point where the blob is attached to the slender jet, S(X, t) is the jet radius 
there and W is the axial velocity. The mass balance is 

- d M  = npS"(dt- dX w). 
dt 

The second equation comes from a balance of momentum. Again we carry this out 
using dimensional variables. The forces acting on the blob at x(t) have two 
contributors: a viscous stress force and a surface tension pull. If we denote the axial 
component of the viscous stress by T,, and the radial component by T,,, then the total 
force on the cross-section at X(t )  is 

F = KS'(T,, - p )  + ~ K u S ,  

and using the normal stress balance equation for slender jets, 

yields 

P = T,,+g/s, 
F = xS"( T,, - T,.) + XUS = ~ x , u S ~  W, + XUS, (5.2) 

with the final expression following from the slender-jet geometry. Stokes jets do not 
possess inertia and so the force in (5.2) is constant at all cross-sections; instead of the 
momentum balance given below then, in the analysis of Stokes jets the equation to be 
used along with (5.1) is 

(5.3) 
a 
- (37CpSZw, + E d )  = 0. 
az 
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Introduction of the similarity variables (3.3) into (5.3) gives equation (3.16) as 
expected. This observation was used by Renardy (1994) in his analysis of slender 
Newtonian and viscoelastic jets with no inertia (see the Introduction) and our results 
are consistent. For jets with inertia a balance of momentum yields 

(5.4) 

When equations (5.1) and (5.4) are non-dimensionalized using the capillary scales given 
at the beginning of 93, we find 

dt 
( 5 . 5 4  

(5.5b) 

where the same symbols have been used to denote non-dimensional quantities. The 
inviscid equations of TK are recovered by dropping the viscous stress term S2W, from 
(5.4) and scaling the capillary number out of the problem. In what follows we consider 
the dynamics beyond pinching for Stokes and Navier-Stokes jets. 

5.1. Stokes jets 
Suppose the jet pinches at t = 0 at some axial position. The local structure of the 
solution as this time is approached from below has been given in $4. The flow field as 
viewed from the outer region is obtained from the large-[ asymptotics of (3.23). The 
constant k, is easily determined by writing (3.32) for large B and the result is 

(5.6a, b) S(Z, 0) = c, zl@, W(2,O) = c2 ,-(l-p)’p, 

Away from the fluid blob, i.e. for z > X(t), a solution can be sought of the form (3.3) 
which for 0 < t 4 1 is of the form 

r = ty, z = tP[, S(t,z) = tf([), 

The analysis presented in $4 leading to the system of similarity equations (3.16) and 
(3.19) is slightly modified by the fact that beyond pinching we have 

W(t,r,z) = tP-l&(LJ+ ..., u = -;yW&+ ...) p = t-lP(S)+ .... (5.7) 

instead of (2.3 e-g), and consequently the system of similarity equations becomes 

l k  W’ = --+- 
a 3f f2’ 

( 5 . 8 ~ )  

(5.8 b) 

The value of k in (5.8b) has is given in terms of ,8 = 0.175 by (3.29). The objective is 
to incorporate information from solutions of (5.8 a, b) into the mass balance equation 
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0.02 , 1 

-0.02 O 4  0.7 0.8 0.9 1 .o 

-0.02 E 0.7 0.8 0.9 1 .o 

-0.02 o.ot : 0.7 0.8 0.9 1 .o 

-0.02 O'O; i 0.7 0.8 0.9 1 .o 

FIGURE 3. Stokes jet. Dynamics just beyond breakup - composite mass balance equation with 
similarity forms. Jet shape shown at successive time intervals of 0.0001. The motion is from left to 
right. 

( 5 . 5 ~ ) .  The Stokes flow equivalent of (5.5b) is ( 5 . 8 ~ )  in the similarity region at least. 
Numerical solutions of (5.8a, b) are required which begin at + co and extend to the 
point where the fluid blob begins. As was pointed out by TK, even though the solutions 
may be continued to - co they are only valid up to the point where the fluid blob begins 
since the blob dynamics are incompatible with the ansatz (5.7). The numerical strategy, 
then, is to prescribe initial conditions at infinity in terms of the asymptotic behaviour 
of the solutions there by using (5.6) to obtain JT' - c1 c l i p ,  W,(() - c2c-(l-P)/fl as 
6- 00, noting that the constants c1 and c2 are known numbers oncefi is prescribed. 

Finally a solution of ( 5 . 5 ~ )  is required. The appropriate solution has the similarity 
form 

X(t )  = X ,  tB ,  q t ,  X,) = tf(X,), W(t, X,) = t8-l w,(Xo), 

from which it follows that 

(5.9) 

for a given value of X ,  (which must satisfy the condition PXo - Wo(X,) > 0 for the mass 
to be positive), equation (5.9) gives the mass of the blob at later times. In figure 3 we 
present a schematic of the evolution of the break in the jet according to equations 
(5.8a, b) and (5.9). The figure is produced as follows. Equations (5.8a, b )  are solved 
numerically starting from a value 6, and integrating into the point 5 = X,. This 
provides the scaling functions W0(6) and AQ for X ,  < .$ < 6,. The mass M(t)  is then 
computed from (5.9) at four different instants from which a radius for the blob to be 
attached at z = tPXo is found (we assume that the fluid blob is a section of a sphere). 
The motion is from left to right and is shown at equal time intervals of 0.001. Owing 
to the symmetry of the solutions the motion to the left of the break is similar. The value 
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of X ,  comes from the solution of the time-dependent breakup and depends on initial 
conditions (for a solution of the time-dependent problem for slender jets, see 
Papageorgiou 1995). 

5.2. Navier-Stokes jets 

For Navier-Stokes jets the equations that give the scaling functions beyond pinching 
are 

f’ W’f’ 

f f 3 W g + - , + 6 i  = Re(-:(W,+(W;)+ W, W;), (5.10a) 

(w,-fg)[>f’+f(l+fW;)=o. (5.10 b) 

Note that Re can be scaled out of the equations by the transformations 

f +f, W, + Re-’/2W,, (+ Re-112(. 

In what follows Re = 1 in all computations. The scaling functions just before pinching 
given by (4.7) and (4.8) have been obtained numerically by Eggers (1993, 1995). In 
particular he shows that these are universal and so the behaviour at infinity 
(equivalently the behaviour of the outer solution as JzJ + 0) is fixed as follows: 

(5.1 1 a, b) 

b: = 4.635, b; = 6.074 x ba = 0.0723, b, = 57.043. 

Using (5.1 1) in (5 .  lOa, b) enables determination of unique solutions beyond pinching 
which are valid away from the break point at least (theoretically they are valid in 
regions where the jet is slender). Solutions of the mass and momentum balance 
equations ( 5 . 5 4  b) are required in order to complete the picture. The following 
solution is valid for small t (see above and TK): 

X(t )  = X ,  t’/2, S(t, X,) = tJTX,), W(t,  X,) = t-’/2W,(X0). 

Substitution into (5.5a, b) yields an expression for the mass as well as a relation that 
determines the constant X,. These are 

W t )  = %f2W,) ( 2 0  - w,(X,>>, (5.12) 

W0 - W,(X,)) (3, - W,(&))f(X,) - NX,) WXX,) = 1. (5.13) 

The constant X ,  was determined numerically from (5.13) by integration of (5.10a, b)  
starting with the unique asymptotic forms (5.11) and integrating inwards to the point 
where (5.13) is satisfied. The computed value was obtained by refining the grid as well 
as increasing the value of 5, until there is no change in the X ,  found, which was 
computed correct to two decimal places to be X ,  = 0.91. A picture of the dynamics to 
the right of the pinch point is given in figure 4 which was produced by the methods 
described earlier. The dynamics to the left of the pinch point are different and are easily 
computed by use of the asymptotic forms (5.11) at ( = [-, and integration to 
increasing axial positions to determine X ,  and hence a hybrid solution analogous to 
that of figure 4. The important difference between the breakup of Navier-Stokes and 
Stokes jets and in particular their dynamics beyond pinching, within the context of the 
present theory, is that the former provide universal local solutions which are 
independent of initial conditions; Stokes jets, however, contain an arbitrary constant 
(the value of X,,) due to the absence of inertial terms. We note that different initial 
configurations will affect both the point where the pinch occurs and the time when it 
happens. The theory presented here describes what happens near this space-time 
singularity, 



130 D. T. Papageorgiou 

(x10-3) o 
-5  5d 0.01 0.02 0.03 0.04 

0.01 0.02 0.03 0.04 

-0.01 O'O;: 0.01 0.02 0.03 0.04 

-0.01 O'O;: 0.01 0.02 0.03 0.04 

FIGURE 4. As figure 3 but for a Navier-Stokes jet. 

6. Conclusions and discussion 
A formal theory has been developed to describe the breakup process of viscous or 

inviscid jets in air. The similarity solutions obtained here constitute inner solutions in 
the vicinity of regions where the jet radius is going to zero which, when matched with 
outer solutions of the Euler, Stokes or Navier-Stokes equations respectively, provide 
a global description of the breakup phenomenon. In general the outer solutions are 
fully nonlinear and must be computed numerically. In numerical calculations of jet 
breakup it is important to have a rational way of continuing the computations beyond 
the change in topology necessitated by the physics and the similarity solutions 
presented here may provide such a possibility. 

Past investigators have used one-dimensional long-wave model equations to describe 
the nonlinear evolution of jets (TK; Eggers & Dupont 1994; Eggers 1993, 1995; 
Renardy 1994; Papageorgiou 1995). Even though such approaches are based on the 
introduction of an arbitrarily long axial length scale they do provide information near 
pinching singularities if the latter are consistent with the underlying long-wave ansatz. 
The arbitrariness of the long axial length scale from the outset of the jet evolution is 
seen to be at variance with the order-one length scale predicted by linear theory since 
the wavelength of a maximally growing wave is independent of the surface tension and 
is a multiple of the undisturbed jet radius. The approach presented in this article is 
related but different in that it constructs asymptotically self-similar solutions directly 
from the full system of equations (Euler, Stokes or Navier-Stokes); in situations where 
the axial length scale is asymptotically larger than the radial one, complete agreement 
with singular solutions of one-dimensional model equations is found, as long as the 
evolution of the one-dimensional models preserve slenderness (see 5 2 also). 

It has also been shown how the similarity solutions may be used to continue the flow 
beyond pinching. This is done by an overall mass and momentum balance in the 
neighbourhood of the receding jet end which use information from the similarity 
solutions away from the end points using the ideas first developed by Keller (1983) and 
TK for inviscid jets. 
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Finally we compare the theory for Stokes and Navier-Stokes jets. The values of the 
exponent /3 are found to be different; the reason for this is that the unsteady and 
convective terms in the axial momentum Navier-Stokes balance enter to fix /3 = then. 
Stokes solutions for /3 = can be formally written down (see (3.34)) but these are not 
strictly correct since the inertial and unsteady terms ignored are of the same order of 
magnitude as the terms retained as long as Re is of order one. Mathematically, the 
problem is fixed by letting Re tend to zero like some power of 7 so that the inertial and 
unsteady terms drop out of the problem. The Stokes jet solution is then given by (3.33). 

In the Stokes jet theory the constant of integration k in equation (3.25b) has a 
physical interpretation which follows from the fact that Stokes flows are inertialess (see 
Renardy 1994). The force acting on a cross-section of the Stokes jet is given by (5.2) 
and its slender (long-wave) equivalent. This force is constant since the flow does not 
possess inertia, which leads to condition (5.3). Integration with respect to z gives (in 
non-dimensional form) 

(6.1) 

with K(t) some function of time. As the pinch forms we write (6.1) in terms of the 
similarity variables introduced in 93; it is crucial, therefore, to have K(t) = 7k as 
7+0 in order to get equation (3.25b). If the force is locally smaller than O(T) the 
alternative equation is 

and a local analysis as in $ 3  produces negative values off, (see (3.2a)) which are not 
acceptable. It has been confirmed by numerical solution of the initial boundary 
problem for the one-dimensional model equations for Stokes jets (see Papageorgiou 
1995), that K(t) - ~k as 7 + 0 + for different initial conditions which produce pinching. 

3 s 2 q  + s = K(t), 

g’ = - 1/(3f), 
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